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The data of Devilieghere et al. (Int. J. Food Microbiol. 1999, 46, 57-70) on bacterial growth in a
simulated medium of modified-atmosphere-packed cooked meat products was processed for
estimating maximum specific growth rate µmax and lag phase λ of Lactobacillus sake using artificial
neural networks-based model (ANNM) computation. The comparison between ANNM and response
surface methodology (RSM) model showed that the accuracy of ANNM prediction was higher than
that of RSM. Two-dimensional and three-dimensional plots of the response surfaces revealed that
the relationships of water activity aw, temperature T, and dissolved CO2 concentration with µmax
and λ were complicated, not just linear or second-order relations. Furthermore, it was possible to
compute the sensitivity of the model outputs against each input parameter by using ANNM. The
results showed that µmax was most sensitive to aw, T, and dissolved CO2 in this order; whereas λ
was sensitive to T the most, followed by aw, and dissolved CO2 concentrations.
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INTRODUCTION

Growth-predictive models are currently accepted as
informative tools that assist in rapid and cost-effective
assessment of microbial growth for product develop-
ment, risk assessment, and education purposes (2-5).
More recently, predictive microbiology has been used
to forecast the growth of spoilage microorganisms in
order to study the shelf life of a food product. Specific
spoilage organisms are selected for certain food products
and used as test organisms. For example, Photobac-
terium phosphorium in modified-atmosphere-packed
fresh fish from tempered seawater (6); Lactobacillus
sake in modified-atmosphere-packed cooked meat prod-
ucts (1), and Pseudomonas putida for chill-stored food
products such as milk and fresh meat (7). Therefore,
the investigation and understanding of the influence of
environmental factors such as temperature (T), water
activity (aw), and dissolved CO2 concentrations on the
growth of L. sake are useful.

Predictive models for the growth of microorganisms
include temperature, pH, and water activity as main
growth-determining factors (4, 8). However, other fac-
tors can also significantly influence the growth charac-
teristics of the modeled microorganism, such as organic
acid concentration and atmosphere. More recently, the
atmosphere is gradually being taken as a fourth impor-
tant growth-determining factor (1, 9-13).

In recent studies on microbial growth, response
surface methodology (RSM) provided an alternative,
useful approach for quantitative assessment of the
effects of environmental factors on microbial growth

(1, 4, 8, 14, 15). Generally speaking, RSM usually is
determined using multiple linear-regression analysis
and may require a large number of cross-section pa-
rameters for better representation of experimental data.
In practice, the widely used RSM is quadratic RSM.
Once the RSM is developed, the growth of microorgan-
isms (response) under various conditions within the
range of the variables used to develop the model can be
constructed. The drawbacks of the RSM arise from the
facts that (1) it is developed from linear and quadratic
combinations of model variables where linearity may
or may not be justified, (2) the collinearity between
terms may exist, and (3) the sensitivity analysis of the
model output against each input parameter is inconve-
nient because of the cross-terms. However, it is well-
known that the artificial neural network-based (ANN)
model, being a highly nonlinear approximator, fre-
quently outperforms first- and second-order RSM, thereby
leading to better mapping of nonlinear data (16).

The objectives of this study, therefore, were (1) to
develop an artificial neural network-based model
(ANNM) for predicting the combined effects of temper-
ature (T), water activity (aw), and dissolved CO2 con-
centrations on the maximum specific growth rate and
the lag phase of L. sake in gas-packed cooked meat
products, (2) to compare the prediction accuracy of
ANNM and RSM to assess the capability of ANN as a
substitute of RSM, (3) to apply the developed ANN
model to evaluate the relative importance of the three
environmental factors in controlling the growth of L.
sake, and (4) to employ the ANN to generate response
surface of the bacterial growth.

MATERIALS AND METHODS

Experimental Data. The data reported by Devlieghere et
al. (1) were used to test the ability of the ANN technique in
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modeling the growth of L. sake in relation to temperature
(denoted as X1), dissolved CO2 concentration (denoted as X2),
and water activity (aw) (denoted as X3). A multifactorial design
arrangement resulted in the total 119 data set under different
possible environmental conditions. The ranges of the param-
eters were X1 ) 4-12 °C, X2 ) 0-2411 ppm, and X3 ) 0.962-
0.986.

Response Surface Methodology. The maximum specific
growth rate µmax and the lag phase λ were the two response
functions investigated in this study. Each of these two
responses was fitted with an empirical equation in order to
correlate to the independent variables, i.e., three controlling
factors. The RSM for µmax or λ (denoted as Y), with quadratic
response surface model including three variables X1, X2, and
X3 was expressed by Khuri and Cornell (17).

where X1, X2, and X3 are the input or controlling variables,
with or without codes, which influence the response variable
Y; coefficients a0, ai (i ) 1, 2, 3), and aij (i ) 1, 2, 3; j ) i, ..., 3)
are the model coefficient parameters. The values of the
coefficients are estimated by multiple linear regression analy-
sis by the least-squares method. The terms whose coefficients
were nonsignificant were deleted backward, stepwise, and
finally, only the terms that had significantly affected the model
remained in the equation.

Artificial Neural Networks (ANN). The structure and
operation of ANN have been discussed and some modified
algorithms were proposed by a number of authors (18, 19).
Thus, the structure and the basic principle are not herein
described.

In practice, the most widely used neural networks are back-
propagation algorithms. Multilayer neural networks with fully
interconnected layers are considered in this paper. Layer l
consists of nl + 1 neurons, the last neuron being a bias neuron
with a constant output of 1.0. If there are P patterns (samples)
for neural network training, the principle of back-propagation
algorithm can be briefly written as the total input to neuron
j in layer l (noninput layer), Il

j is determined by

where wij
l-1,l represents the connecting weight between neu-

ron j in layer l and neuron i in the next lower layer. The
activity level of neuron j is a linear or nonlinear function of
its total input:

where f(‚) denotes a nondecreasing smooth function (generally
called transfer function or activation function). The transfer
function for the hidden layer is the conventional sigmoidal
function with the range of (0, 1), or hyperbolic function with
the range of (-1, 1). The linear function is always used in
output layer, which assists in accelerating the converged
procedure, thereby avoiding false local minima (20).

Learning is carried out by iteratively updating the connect-
ing weights to minimize the sum-of-squares error function E,
which is defined as:

where no is the number of outputs; P is the input patterns or
samples; and Op,j

o and dp,j are scaled network actual and
desired output values, respectively.

As most combinations of weights produce a different error,
an error surface exists as a function of the connection weights.
This error surface generally has a large number of local

minima as a result of the large number of permutations of the
weights that leave the neural network’s input/output function
unchanged. The aim of training is to find a set of weights that
will minimize the error function.

Initially, the weights are small, arbitrary values. As training
(learning) progresses, the weights are updated systematically
using a learning rule, usually error back-propagation algo-
rithm. The weight updating equation generally takes the form:

where R and η are the momentum and learning rate, respec-
tively. In eq 5, the size of the steps decreasing the error surface
is thus determined using the learning rate η and the momen-
tum R. There are several methods for finding the weight
increment, ∆wij, of which the gradient descent method is
frequently used. The gradient descent method results in
weights being changed in the direction of steepest descent
down on the error surface:

ANN generally learns an approximation to the underlying
rules governing a relationship. Consequently, it is not well
suited to learning deterministic input-output relationships, as
it is usually not able to perform exact mappings. However,
because ANN has the ability to learn the underlying relation-
ships between inputs and outputs, it is well suited to modeling
natural systems, where complex relationships exist between
the inputs-outputs, especially when data are incomplete or
noisy (21).

Data Preprocessing. The RSM belongs to the class of
model-driven method, implicating that the parameters are
estimated according to the predetermined equation. The
modeled results are usually not influenced, or only slightly
influenced, by the data preprocessing. However, ANN belongs
to the class of data-driven approaches, so that the underlying
relationship between the inputs and outputs is mapped by
iterative learning of the training data sets. In ANN modeling,
all the input/output variable data should be normalized into
the range of (0, 1) or (-1, 1) for sigmoidal or hyperbolic transfer
function, respectively (22). One way in scaling input/output
variable in interval [ê1, ê2] corresponding to the range of the
transfer function is

where the x and xnorm are the original and its corresponding
normalized value, and xmax, xmin are the maximal and minimal
values of each variable over the whole data set. Furthermore,
it is more preferable to normalize the data between slightly
offset above-mentioned values such as 0.1 and 0.9 rather than
0 and 1, thereby letting ê1 ) 0.1 and ê2 ) 0.9 for sigmoidal
transfer function.

Evaluation Criteria. To compare the fitting/training and
prediction accuracy of ANN with RSM, the following evalua-
tion criteria were employed (23, 24).

Root-Mean-Squares Error (RMSE). The RMSE is calcu-
lated between the desired and actual network output and then
averaged across all data. It can provide us information about
how consistent the model would be in the long run. The
formula of RMSE is

Average Absolute Percentage Error (AAPE). It is a
nondimensional quantity that permits an accurate quan-
titative comparison among several attempted models. The
AAPE is

Y ) a0 + ∑
i)1

3

aiXi + ∑
i)1

3

∑
j)1

3

aijXiXj (1)

Il
j ) ∑

i

wij
l-1,l xi

l-1 (2)

Ol
j ) f(Il

j) (3)

E )
1

2 ∑
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P
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no

(Op,j
o - dp,j)

2 (4)

wij(t + 1) ) wij(t) + η∆wij(t + 1) + R∆wij(t) (5)

∆wij ) ∂E
∂w

(6)

xnorm ) ê1 + (ê2 - ê1)
(x - xmin)

(xmax - xmin)
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RMSE ) x∑
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P

∑
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no
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Average Absolute Error (AAE). It is another index,
replacing AAPE in situations when the absolute of target value
is small, that permits an accurate quantitative comparison
among several attempted models. The AAE is

AAE and RMSE rely on the average actual error value
indicating the overall error, which exists between the observed
and predicted values. These indices directly indicate the
predicted absolute error. In general, RMSE is more suitable
than AAE for errors, which are all greater than 1 or less than
1, whereas AAE can be used in either case. In contrast, the
absolute errors are not immediately interpretable, thus, the
absolute errors may not be of as much interest as the relative
errors in prediction. AAPE is a relative deviation, which is a
rather reasonable expression to indicate the predictive ac-
curacy. However, when the observed values are small, it is
improper to use AAPE.

Determination Coefficient (R2). The determination coef-
ficient represents the relation between desired and model
actual outputs. A high R2 alone cannot indicate a good model
unless the intercept and slope of the best-fit model approach
0 and 1, respectively. The R2 is calculated as

where dj ) (1/P)∑p)1
P dp,j.

Sensitivity Analysis Criteria. Neural network can con-
duct a sensitivity analysis of the inputs to a neural network
(25). The sensitivity is defined as the ratio between the error
with omission and the baseline error, and ranks the variables
in the order of importance. It often identifies variables that
can be safely ignored in subsequent analysis, as well as key
variables that must always be retained. The sensitivity of an
input variable against the output variable can be assessed
through the following criteria.

Variable Sensitivity Error (VSE). The VSE indicates the
performance of the developed network if that variable is
unavailable. An important variable has a high VSE, thus
indicating that the network performance badly deteriorates if
it is not present.

Variable Sensitivity Ratio (VSR). The VSR is a relative
indication reporting the ratio between the VSE and the error
of the network when all variables are available. If the VSE is
one or less, the network actually performs better if a variable
is omitted entirely. We can rank the variables in order of
importance according to their VSR.

ANN Geometry. When building a neural network, a key
design decision is to determine the number of layers and then
the responsible neurons in each layer. It has been shown that
ANN with one hidden layer can approximate any continuous
function (26), and one hidden layer is thus used in this study.
Furthermore, Najjar et al. (27) and Statsoft (25) suggested two
iterative methods, the so-called construction method and
destruction method, respectively, for determining the ap-
propriate number of neurons in the hidden layer. In general,
a smaller network executes faster, trains faster, and general-
izes more accurately to untrained data. Increasing the number
of hidden neurons can enhance the modeling power of the

network, in that it can model a more convoluted, complex
underlying function. However, this also makes it large, thus
being more difficult to train, rendering it slower to operate,
and thereby resulting in over-fitting.

In contrast, decreasing the number of hidden neurons has
an opposite effect. In fact, the prediction accuracy using a sum-
of-squares error function of the ANN with the optimum
number of hidden neurons reaches its minimum, at which
point the overall error will decrease much more slowly, thus,
the network achieves an optimal balance between over-
training and under-training. In other words, the number of
the hidden layer neurons should be chosen as small as possible
if only the ANN satisfies the predetermined accuracy, so that
over-training is unlikely to occur.

ANN Training, Verifying, and Testing. The 119 data
were split into three sets: 99 data training set, 10 data verifi-
cation set, and 10 data test set. To avoid any bias, verification
set and testing set were all selected randomly from the entire
database. The STATISTICA Networks (25) was used in this
study. A constant momentum of R)0.3 and the learning rate
of µ)0.1 (default values) were used to train the network. The
condition used to determine whether the learning process stop-
ped or the training error was less than the predetermined
value in this study was 0.001 h-1 for variable µmax and 22 h
for λ.

AAPE )

∑
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P
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P
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Table 1. Evaluation Criteria of Predictive Models for
Maximum Specific Growth Rate µmax

RMSE AAE adjusted R2

RSM model 0.013 0.0098 0.926
ANN model 0.011 0.0090 0.943

Table 2. Evaluation Criteria of Predictive Models for
Lag Phase λ

RMSE AAPE adjusted R2

RSM model 6.88 5.39 0.966
ANN model 6.70 5.13 0.972

Figure 1. Comparison between the predicted and measured
maximum specific growth rate µmax (h-1) for L. sake.

Figure 2. Comparison between the predicted and measured
lag phase λ (h) for L. sake.
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RESULTS AND DISCUSSION

ANN-based models were compared with response
surface models in terms of predictive accuracy, relative
importance, and effect of input variables on maximum
growth rate.

Predictive Accuracy. Using the sigmoid transfer
function throughout experiments, it was found that the
network structure 3-2-1 was reasonable in ANN-based
models as far as the training and verification accuracies
and structure compaction were concerned. With this
small number of hidden layers as well as close errors
of training, verification and test subsets warrant that
over-learning has not occurred (25).

Tables 1 and 2 show the evaluation criteria of RMSE
derived from regression analysis and ANNM for the
maximum specific growth rate µmax and lag phase λ,
respectively. The ANN-based predictive models are in
good agreement with the experimentally measured
responses to a greater extent than those of RSM models.
Figure 1 shows the comparison between the experimen-
tal µmax and its predicted value by ANN-based model.
Figure 2 shows the comparison between the experimen-
tal λ and the corresponding values predicted by ANN-
based model for the entire data sets. These results are
similar to those using the extended Ratkowsky models
reported by Devlieghere et al. (1), except for smaller
deviations at µmax<0.06 h-1 and λ<50 h.

Relative Importance of Input Variables. The
training set and verification set of the entire 109 data
set (another 10 data are used for testing) utilized to
develop the network were used to calculate the variable
sensitivity error (VSE) and variable sensitivity ratio
(VSR). The VSE and VSR for the output variable µmax
and λ with respect to temperature (T), water activity
(aw), and dissolved CO2 concentrations are shown in
Tables 3 and 4, respectively. For the maximum growth
rate µmax, the water activity aw is the most sensitive

parameter in the model, followed by T and dissolved
CO2 concentrations (Table 3); whereas the lag phase λ
is most sensitive to temperature T, followed by aw, and
then dissolved CO2 concentrations (Table 4).

Effect of Input Variables on Maximum Growth
Rate (µmax). Figures 3, 4, and 5 show the effect of each
input variable on the maximum growth rate µmax. On
the basis of the data shown in Figure 3, it is concluded
that at a dissolved CO2 concentration lower than1000
ppm, µmax increases with an increase in temperature.
However, at higher dissolved CO2 of 2000 ppm, when
the temperature rises, the maximum growth rate µmax
increases first, and then decreases, with the turning-
point at about 7 °C. This decrease was regarded as
“illogical” by Devlieghere et al. (1). Because the RSM
lines in Figure 3 are in good agreement with their
counterpart in Figure 1 of Devlieghere et al. (1), the
illogical prediction by RSM at low water activity is likely
to be the fact and not necessarily illogical.

Figure 4 shows that when water activity is high, the
µmax decreases quicker than at lower water activities

Figure 3. Influence of temperature on the prediction of µmax (h-1) at low water activities (here aw ) 0.965) and various dissolved
CO2 levels (1, 0 ppm; 2, 1000 ppm; and 3, 2000 ppm) using ANN predictive model (solid line) and RSM (dashed line), respectively.

Table 3. Sensitivity Analysis of Variables for Maximum
Specific Growth Rate µmax

variables

temperature
(°C)

dissolved CO2
(ppm)

water activity
aw

training rank 2 3 1
VSE 0.0339 0.0189 0.0390
VSR 2.365 1.322 2.722

verification rank 2 3 1
VSE 0.0432 0.0213 0.0447
VSR 4.210 2.079 4.353

Table 4. Sensitivity Analysis of Variables for Lag
Phase λ

variables

temperature
(°C)

dissolved CO2
(ppm)

water activity
aw

training rank 1 3 2
VSE 36.2390 7.9084 25.3079
VSR 5.506 1.202 3.8450

verification rank 1 3 2
VSE 25.2306 6.7885 9.4778
VSR 3.7933 1.021 1.425

Figure 4. Influence of dissolved CO2 on the prediction of
µmax(h-1) at median temperature (here T ) 8° C) and various
water activities (1, aw ) 0.965; 2, aw ) 0.975; 3, aw ) 0.985)
using the ANN predictive model.
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as the dissolved CO2 increases. It is interesting to note
that at aw ) 0.985 and 12 °C, µmax with dissolved CO2
of 2000 ppm has reduced to about the same level as that
at aw ) 0.965 (Figure 3). Within the temperature range
investigated (4∼12 °C) and at dissolved CO2 of 1000
ppm, µmax increases with increase in water activity
(Figure 5).

Nine 3-D plots were generated to represent variation
of µmax at various T, dissolved CO2, and aw values.
Among them, three plots for low, medium, and high aw
(0.965, 0.975, 0.985) are illustrated in Figures 6, 7 and
8, respectively.

Following are the results of these 3-D plots made by
ANN (25): (1) At aw ) 0.965 (Figure 6), the response
surface is more complicated than those at other aw
values, which Devlieghere et al. (1) regarded illogical;
and at low temperatures, the response slightly increases
as the dissolved CO2 decreases; in contrast, at high
temperatures, µmax more rapidly increases with decrease
in dissolved CO2. (2) At medium or high aw(Figures 7
and 8), the response surfaces are simply quadratic,
showing that the higher the temperature and the lower
the dissolved CO2, the greater the µmax. (3) Regardless
of the temperature, the higher the aw, the greater the
µmax. At T ) 12 °C and dissolved CO2 ) 0 ppm, the µmax
was 0.060, 0.128, and 0.204 at aw)0.965, 0.975, and
0.985, respectively. (4) In general, as temperature
became low, the effects of dissolved CO2 at medium or
high aw on the growth rate were inclined to reduce.

The nonlinear complexity in the model at low water
activity is clearly shown in Figure 6 in comparison with
Figures 7 and 8 at higher water activity. For nonlinear
cases such as this, ANN is obviously more appropriate

to apply than linear RSM. Accordingly, the interpreta-
tion of models should be different. An advantage of the
ANN-based predictive model over an RSM model is that
ANN is a powerful tool for constructing microbial
prediction models. When information on additional
environmental factors becomes available, the ANN
model is recommended to extend by adding neurons and/
or layers for predicting the shelf life.

CONCLUSIONS

This paper demonstrated that models could be con-
structed to predict bacterial growth rate and lag phase
of modified-atmosphere-packed meat products more
accurately by using ANN than RSM. This can be
attributed to the ANN’s ability to develop nonlinear
mapping of data. Sensitivity of the ANN model revealed

Figure 5. Influence of water activity on the prediction of µmax (h-1) at medium dissolved CO2 (here 1000 ppm dissolved CO2) and
various temperatures (1, T ) 4 °C; 2, T ) 8 °C; 3, T ) 12 °C) using the ANN predictive model.

Figure 6. Variation of the maximum specific growth rate µmax
(h-1) with dissolved CO2 (VAR2) and temperature (VAR1) at
aw ) 0.965.

Figure 7. Variation of the maximum specific growth rate µmax
(h-1) with dissolved CO2 (VAR2) and temperature (VAR1) at
aw ) 0.975.

Figure 8. Variation of the maximum specific growth rate µmax
(h-1) with dissolved CO2 (VAR2) and temperature (VAR1) at
aw ) 0.985.

Neural Network-Based Prediction of Bacterial Growth J. Agric. Food Chem., Vol. 49, No. 4, 2001 1803



that the water activity was the most important control-
ling factor affecting the maximum specific growth rate,
µmax, of the L. sake, followed by temperature, and then
dissolved CO; however, the lag phase λ was most
affected by T, followed by aw, and then dissolved CO2
concentration. These factors are also synergistic in the
effect on the shelf life of cooked meat products. Out-
standing antimicrobial activity of CO2 was observed at
low water activity and temperatures above 7 °C, which
is about equal in the level at higher water activity.
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